Chapter 5: Nomenclature

These Notes are to <u>SUPPLIMENT</u> the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, <u>READ THE CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

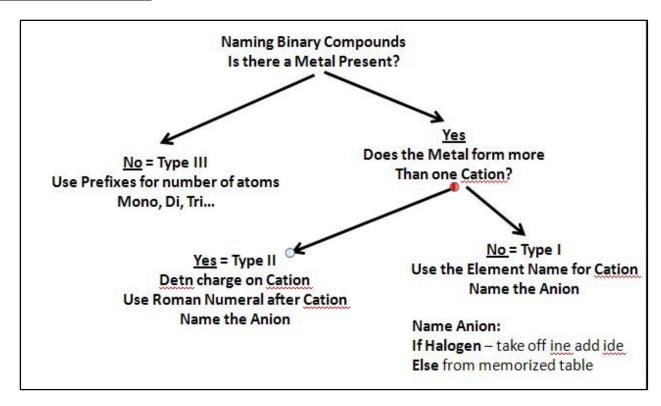
The author is providing these notes as an addition to the students reading the text book and listening to the lecture. Although the author tries to keep errors to a minimum, the student is responsible for correcting any errors in these notes.

You need to know how to name a compound and go from a name to a structure. When you're given a chemical name, you will be able to write out the reaction.

Binary Compounds:

Compounds that contain a metal and a non metal or Compounds that contain two non metals

Binary Ionic Compound


When a metal looses one electron and a non-metal gain that electron and the two combine to form a compound, it is a Binary Ionic Compound

Na
$$\rightarrow$$
 Na⁺ + 1 e⁻

$$Cl + 1e^{-} \rightarrow Cl^{-}$$

$$Na^+ + Cl^- \rightarrow NaCl$$

NAMING COMPOUNDS

SIMPLIFIED RULES FOR NAMING

Rules for naming compounds:

Structure → Name

- 1. If it begins with an H, it's an acid, except for water.
- 2. What is the Cation [+], what is the name of the cation element?
- 3. Follow the rules above for naming.

Rules for naming compounds:

Name → Structure

1. Convert the Cation Name, the first name of the compound to a Chemical Symbol

Sodium → Na

2. Convert the Anion Name to a Chemical Symbol

Chloride \rightarrow Cl

3. If the Anion is a Polyatomic, put down the correct formulae for it

Carbonate \rightarrow CO₃

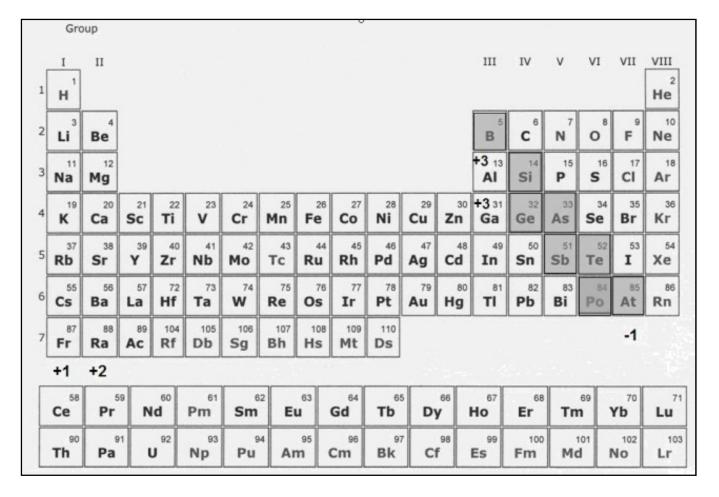
4. Put the charges for the Cation and Anion above the element

Na⁺¹ Cl⁻¹

These charges come from various locations. Locate the Cation on the Periodic Table

- A. If the Cation is in Group I, the Alkaline Metals, its charge is +1
- B. If the Cation is in Group II, the Alkaline Earth Metals, it's charge is +2
- C. If the Cation is in the middle of the table, you must memorize the charge.
- D. If the Cation Name has a Roman Numeral after it, that is the charge Iron (III) \rightarrow Fe⁺³

Locate the Anion on the Periodic Table.


- 1. If the Anion is in Group VII, the Halides, it has a -1 charge
- 2. Else you must memorize the charge and structure of the Poly Atomic

Now put in the correct number for the subscripts, or multipliers for the charge, so the compound has a net zero charge: $Fe^{+3} CO_3^{-2} \rightarrow Fe_2^{+3} (CO_3^{-2})_3$

Note as a shortcut

The +3 charge for the iron now becomes the 3 subscript for the carbonate

The -2 charge for the carbonate now becomes the 2 subscript for the iron.

If the Cation is in Group I, it has a +1 Charge

If the Cation is in Group II, it has a +2 Charge

If the Anion is in Group VII, it has a -1 Charge

Naming Simple Compounds [Not a Simple Task]

Chemical Nomenclature is the systematic naming of chemical compounds

Inorganic Compounds are composed of elements other than Carbon

Need to determine the charges on the Cation and Anion

Cation	Group 1A	Alkali Metals	+1	Li, Na, K, Rb, Cs
	Group IIA	Alkaline Earth Metals	+2	Be, Mg, Ca, Sr, Ba
	Group IIIA	Some Transition Metals	+3	Al, Ga, In, Tl
Anion	Group 8A	Noble Gases do not form ionic compounds		
	Group 7A	Halogens	-1	F, Cl, Br, I

Type 1 Group 1 and 2 Metals

- 1. Cation named first, then the Anion 2nd
- 2. Simple Cation [single atom] takes the name from the element Na^+ = Sodium
- 3. Simple Anion named taking the 1st part of the element name and add **-ide if it's a halogen** e.g. NaCl = Sodium Chloride

Type II Transitions Metals

- 1. Cation is always named 1st, then the Anion
- 2. Cation can assume more than one charge specify the charge with Roman Numerals Cu^{+1} and Cu^{+2} = Copper (I) and Copper (II) FeCl₃ = Iron (III) Chloride FeCl₂ = Iron (II) Chloride

Type III Binary Compounds containing NonMetals [No Metals]

- 1. The 1st element is named first and the full name is used
- 2. The 2nd element is named as if it were an ANION [ide]
- 3. Prefixes donate the number of atoms present
- 4. Prefix MONO is NEVER used for the 1st element [See Table 2.7 p 68]
 - 1. Mono 3. Tri 5. Penta 7. Hepta 2. Di 4. Tetra 6. Hexa 8. Octa

Polyatomics: These are charged entities containing several elements bonded together and are treated as one.

Check out this video on YouTube "How to Remember Your PolyAtomics":

http://www.youtube.com/watch?v=jcKR9U4Ixlk

Oxyanions Note the increasing in number of oxygen atoms

ClO $^{-}$ *Hypo*chlorite ClO $_{2}^{-}$ Chlor**ite** ClO $_{3}^{-}$ Chlor**ate** ClO $_{4}^{-}$ **Per**chlorate

Addition of acid or H⁺: The following are the base with the addition of one H⁺

PO₄³ Phosphate CO₃² Carbonate

HPO₄²- Hydrogen Phosphate HCO₃ Hydrogen BiCarbonate

H₂PO₄ Dihydrogen Phosphate

Chem 1025, Ch 5 Page 4 of 8 5-Apr-09 9:12 AM

Simple Cations [Table 5.1]						
Cation	Name	Catio	on Nar	Name		Name
H^{+}	Hydrogen	Be ²⁺	Ber	yllium	Al^{3+}	Aluminum
Li ⁺	Lithium	Mg^{2+} Ca^{2+}	Mag	gnesium		
Na ⁺	Sodium	Ca^{2+}	Calo	Calcium		
K^{+}	Potassium	Ba^{2+}	Bar	ium		
Cs ⁺	Cesium					
Ag^+	Silver	Zn ²⁺	Zino	2		
Common T	Type II Cations [T	able 5		_		
Copper	Copper (I) Cu ⁺		Copper (II	Cu $^{2+}$		
Mercury	Mercury (I) Hg2 ²	+	Mercury ($H)Hg^{2+}$		
Iron			Iron (II)	Fe ²⁺	Iron (III)	Fe ³⁺
Cobalt			Cobalt (II)		Cobalt (II	I) Co ³⁺
Tin			Tin (II)	Sn^{2+}	Tin (IV)	
Lead			Lead (II)	Pb ²⁺	Lead (IV)	Pb^{4+}
Type III P	refexes					
Mono	1	Tetra	4	Hep	ta 7	
Di		Penta		Hexa		
Tri	2 3	Hexa				
NI G			-	~?		
	<u>he Common Polya</u>	tomic	<u>lons</u>	S^{-2}	Sulfide	
NH_4^+	Ammonium			SO_3^{2-}	Sulfite	
NO_2	Nitrite			SO_4^{2-}	Sulfate	
NO_3	Nitrate			HSO_4^-	Bisulfate	
					Hydrogen	Surrate
OH ⁻	Hydroxide			CO_3^{2-}	Carbonate	2
CN^{-}	Cyanide			HCO_3^-	Hydrogen	Carbonate
	•				or BiCarl	
PO_4^{3-}	Phosphate					
$\mathrm{HPO_4}^{2-}$	Hydrogen Phosph	ate		$C_2H_3O_2$	Acetate	
H_2PO_4	Dihydrogen Phosp	phate		O_2^{2-}	Peroxide	
ClO	Hypochlorite			MnO_4^-	Permanga	nate
ClO_2	Chlorite				1 0111141154	
ClO_3	Chlorate			$\operatorname{Cr_2O_7}^{2-}$	Dichroma	te
ClO_4	Perchlorate			$\operatorname{CrO_4}^{2-}$	Chromate	
Chem 1025, 0		I	Page 5 of 8	0. 0 ₄		9:12 AM
·,		-	<i>U</i>		r- 37	

Acids

Acids with Oxygen Acid		Acids	ls without Oxygen		
H_2SO_4	Sulfuric Acid *	HF	Hydrofluoric Acid		
H_2SO_3	Sulfurous	HCl	Hydrochloric Acid *		
H_3PO_4	Phosphoric Acid	HBr	Hydrobromic Acid		
HNO_3	Nitric Acid *	HI	Hydroiodic Acid		
HNO_2	Nitrous	HCN	Hydrocyanic Acid		
$HC_2H_4O_2$	Acetic Acid	H_2S	Hydrosulfuric Acid		
ClO	Hypochlorite	HClO	Hypochlorous Acid [also called common bleach]		
ClO_2	Chlorite	$HClO_2$	Chlorous Acid		
ClO_3	Chlorate	$HClO_3$	Chloric Acid		
ClO_4	Perchlorate	$HClO_4$	Perchloric Acid		

^{*} Common Lab Acids

EXAMPLE PROBLEMS:

Write the balanced equation and name the products.

Magnesium Hydroxide and Hydrochloric Acid

Silver Nitrate and Copper (II) Chloride

Iron (II) Phosphate and Aluminum Hydroxide

Cobalt (III) Sulfate and Potassium Chloride

Ammonium Perchlorate and Sodium Hydroxide

Calcium Hydroxide and Hydrochloric Acid

Sulfuric Acid and Iron (III) Hydroxide

Copper (II) Carbonate and Phosphoric Acid

Potassium Dichromate and Lithium Chloride

 $Ca (NO_3)_2$

Ba CO₃

 $Mg_3 (PO_4)_2$

Co CrO₄

 $Fe_2 (CrO_4)_3$

Fe (MnO₄)₃

Fe $(CN)_3$

Chem 1025, Ch 5

Na	+1	Alkali Metal	He		Noble Gas
K	+1	Alkali Metal	Ne		Noble Gas
Rb	+1	Alkali Metal	Ar		Noble Gas
Cs	+1	Alkali Metal	Kr		Noble Gas
Fr	+1	Alkali Metal	Xe		Noble Gas
Be	+2	Alkaline Earth Metal	Rn		Noble Gas
Mg	+2	Alkaline Earth Metal	F		Halogen
Ca	+2	Alkaline Earth Metal	Cl		Halogen
Sr	+2	Alkaline Earth Metal	Br		Halogen
Ba	+2	Alkaline Earth Metal	I		Halogen
Ra	+2	Alkaline Earth Metal	At		Halogen
			0		3
Fe	+2	Iron II / Ferrous	S		
	+3	Iron III / Ferric	NH ₄	+1	Ammonium
Cu	+1	Copper I / Cuprous	NO ₂	1-	NITRITE
	+2	Copper II / Cupric	NO ₃	1-	NITRATE
Sn	+2	Tin II / Stannous	SO ₃	2-	SULFITE
	+4	Tin IV / Stannic	SO ₄	2-	SULFATE
Pb	+2	Lead II / Plumbous	HSO ₄	1-	BISULFATE
	+4	Lead IV / Plumbic	ОН	1-	Hydroxide
Hg	+2	Mercury II / Mercuric	CN	1-	Cyanide
Hg2	+2	Mercury I / Mercuric	PO ₄	3-	PHOSPHATE
			HPO ₄	2-	HYDROGEN PHOSPHATE
H ₂ SO ₄		Sulfuric Acid	H ₂ PO ₄	1-	DIHYDROGEN PHOSPHATE
H ₂ SO ₃		Sulfurous Acid	CO ₃	2-	CARBONATE
HNO ₃		Nitric Acid	HCO ₃	1-	BICARBONATE
HNO ₂		Nitrous Acid	ClO	1-	HYPO CHLORITE
H ₂ PO ₄		Phosphoric Acid	ClO ₂	1-	CHLORITE
HC ₂ H ₃ O ₂		Acetic Acid	ClO ₃	1-	PERCHLORATE
HF		Hydrofluoric	$C_2H_3O_2$	1-	Acetate
HCl		Hydrochloric	MnO ₄	1-	Permanganate
HBr		HydroBromic	Cr ₂ O ₇	2-	DICHHROMATE
HI		HydroIodic	CrO ₄	2-	CHROMATE
HCN		HydroCyanic	O_2	2-	Peroxide
H ₂ S		HydroSulfuric			
-		•			